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Abstract-This paper establishes the convergence of the continuous-time Galerkin technique
as applied to quasi-static, linear viscoelasticity.

INTRODUCTION

In recent years the finite element method has been successfully applied to boundary-value
problems within the quasi-static, linear theory of viscoelasticity[I-5]. The finite element
method, as applied in these circumstances, is a special case of what is now referred to as the
continuous-time Galerkin technique. In this paper we establish the convergence of this
technique. Our results are sufficiently general to include thermoviscoelastic bodiest under
the influence of a prescribed time-dependent temperature field.

I. NOTATION

Throughout this paper B designates a (compact) properly regular[6. 7] region of three
dimensional Euclidean space, while () and J* are complementary closed regular[7] subsur
faces of the boundary 8B of B:

(1.1)

Let v denote the inner product space (translation space) associated with Euclidean space;
u • v is the inner product of u, v E v. We use the term tensor as a synonym for" linear trans
formation from v into v." A tensor A is symmetric if A = AT, skew if A = - AT; here AT
denotes the transpose of A. For convenience, we write

Sym = the space of symmetric tensors.

The inner product of two tensors A and B is defined by

A . B = tr(ABT
). (1.2)

where tr denotes the trace.
Given a vector field u on B, we write Vu for its generalized gradient [8] and

Vu = t(Vu + VuT
) (1.3)

t E.g. thermorheologically simple viscoelastic bodies.
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for its generalized symmetric gradient. Further,

W(B) = Wi(B) (1.4)

is the Sobolev space consisting of all vector fields u on B such that both u and Vu belong to
L 2(B); the norm of u E WeB) is, of course, defined by

Ilull~(B) = IluIILB) + IIVuIIL,B), (1.5)
where

II Vu ll£2(BJ = f Vu' Vu
B

IluiILB) = f u. U,
B

are the L 2 (B) norms of u and Vu.
Given two tensor fields A, B E Lz{B) we write

(A, B) = fA' B,
B

so that

(A, A) = IIAIIL(B)'

A vector field r on B is a rigid displacement field if it admits the representation

rex) = a + W[x - xo],

(1.6)

(1.7)

(1.8)

(1.9)

where a is a vector, W a skew tensor, and Xo a point. As is well known, r E WeB) is rigid if
and only ift

Vr =0. (1.10)

Remark.t If J # cP, and if r is a rigid displacement field that vanishes on j, then r = O.
We will frequently deal with functions '¥(x, t) of position x E B and time t E T, where Tis

an interval of the reals, R. For such a function we write '¥ t for the field on B defined by

'¥t(x) = '¥(x, t). (1.11)

Finally, a rigid motion is a vector field r on B x T with r t a rigid displacement for each
t E T.

2. THE BOUNDARY-VALUE PROBLEM-WEAK SOLUTIONS

The fundamental system of iield equations for a linear viscoelastic solid consists of the
equation of equilibrium

div S + b = 0
and the constitutive relation§

Sex, t) = Sex, t) + C(x)Vu(x, t) +rK(x, t, 1WU(X, r) dr.
o

(2.1 )

(2.2)

t For smooth fields this result is well known; for functions in WeB) see, e.g. Fichera[6], p. 384 and
HlavaCek and Neeas[9], Lemma ILL

t See, e.g. HlavaCek and NeCas[9], Lemma II.3. (Note that since (J is a regular subsurface of iJB, if j"* </>,
then'; * </>.)

§ In the usual quasi-static theory S= 0 and K(x, t, T) = K(x, t -- T). The field Sis the stress that would be
present in the material if the strain ~u were zero for t ::,. O. Its presence allows for the possibility ofa prescribed
non-zero strain history up to time t = O. Also, the general theory presented here includes, as a special case,
thermoviscoelastic materials in situations for which the temperature field is known a priori.
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Here u is the displacement field, S is the stress field, Sis the residual stress field, and b is the
body force field. The fields C and K are material response functions; they describe, respec
tively, the instantaneous and the delayed response of the material. The field equations (2.1)
and (2.2) must be satisfied at every x E B and for aU t E T, where B is the region of space
occupied by the body, and T is a (possibly infinite) time-interval of the form [0, a).

To these field equations we adjoin the boundary conditions

u = h on <) x T, So = s on ;j* X T, (2.3)

where hand s are, respectively, the prescribed surface displacement and surface traction, and
o is the outward unit normal to oB.

The b~)llndary-value problem under consideration consists in the following: given:

C, K, b, S, h, s;find: fields u and S that satisfy (2.1-2.3). For convenience, we assume, once
and for all, that:

(At) C(x) (for x E B) and K(x, t, T) (for x E Band °~ or ~ t < (0) are linear transforma
tions from Sym into Sym; C(x) is symmetric and positive definite,t that is,

A . C(x)B = B . C(x)A

for all A, B E Sym and there exists a constant K > 0 such that

A • C(x)A ~ KA • A

(2.4)

(2.5)

for all A E Sym; the mappings x ~ C(x) and (x, t, T)~ K(x, t, T) are continuous.

(A 2 ) S= ST, and the mappings t~ St, t~ b t , t~ h t , and t~ St on T have values in
L 2(B), L 2(B), Lia), and L 2(J*), respectively, and (as Lz-valued mappings) are piecewise
continuous.

(A 3 ) When J = 1J (so that J* = oB) the prescribed loads are in equilibrium; that is,

f s'r+ f b'r=O
vB B

(2.6)

for every rigid displacement r.:j:
Note that, by (2.5) and the continuity of C on B, there exists a constant K 1 ~ II: such that

for every function A: B -l- Sym belonging to L 2(B)

II:IIAIIE,(B) ~ (A, CA) ~ KIIIAIIL(B)' (2.7)
We call

<I> = {cp E WeB): cp = 0 on o} (2.8)

the variation space; fields cp E <I> will be referred to as variations. It is important to note that
each variation is a function of x alone.

Now let u(x, t) and S(x, t) constitute a sufficiently smooth solution to the boundary-value
problem (2.1-2.3), and let cp(x) be a variation. By (AI)' (A 2) and (2.2), S is symmetric;
therefore

(2.9)

t Coleman[IO] has shown that C(x) positive semi-definite and symmetric is a consequence of the second
law of thermodynamics. Gurtin and Herrera[ll] have shown that C(x) positive definite and symmetric
follows from the requirement that work be done to deform the body from an equilibrium state.

t This is equivalent to the usual force and moment balance equations for B (c.f., e.g. Gurtin[7], Theorem
18.3).
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where we have used the notation (1.11). If we take the inner product of (2.1) with q>, integrate
over B, and use the divergence theorem in conjunction with (2.3)2 , (2.8). (2.9) and (1.7). we
arrive at

Thus, if we define

Y, (q» = r S,' q> + rb, • q> Js, .Vq>:
',. • B B

then (2.2) and (2.10) imply that

<CVu" Vq» + r'< K(t. r)Vut • Vq» dr = 3',(q».
'0

where we have written K(t, r) for the field on B with values K(t, r, x). so that

<K(t. r)Vu t • Vq» = J [K(t. r, x)Vu(x, r)]' Vq>(x) dx.
B

(2.10)

(2.11 )

(2.12)

(2.13)

We have shown that every sufficiently smooth solution of (2.1-2.3) satisfies (2.12) for every
t and every variation q>. Conversely. (for sufficiently smooth data) it is not difficult to verify
that every sufficiently smooth field u that satisfies (2.3)1 and (2.12) for every t and every
variation q> is a solution to the original problem (2.1-2.3). This should serve to motivate
the following definitions.

By the solution space we mean the space Y of all vector fields u on B x T such that u, E

W(B) at each t E T and t -> Vu,. as a mapping from T into L 2(B), is piecewise continuous.
A field u E Y that satisfies

u = h on .j"X T (2.14)

is kinematically admissible. A weak solution is a kinematically admissible field u that satisfies
(2.12) for every t E T and every variation q>.

3. THE CONTINUOUS TIME GALERKIN APPROXIMATION

Let <1>N be an N-dimensional subspace of <1>. let (j)l' (j)z •.. " q>N be a basis for <1>.'V. and let
hN E Y. We consider approximations of the form

N

v(x. t) = hN(x. t) + I an(t)q>n(X)'
n=l

(3.1)

In applications {(j)n} and hN are prescribed fields; the (j)n are basis functions. e.g. for the
finite element method, while hN is chosen to approximate h on j x T. Indeed. since <1>N c <1>,
each <Pn = 0 on j. and (3.1) implies that

v = hN on .) x T. (3.2)

When.;; is empty we omit the function hN and consider approximate solutions of the form

N

v(x. t) = I an(t)<pix).
n=l

(3.3)
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c.§N = CS(hN, $N) = {v E //': v has the form (3.1) (or (3.3) if J = </1)}. (3.4)

We call CSN an approximation space of dimension N. By a continuous-time Galerkin solution
for CSN we mean a function v E CSN that satisfiest

<CVv" Vq» + {<K(t, r)Vv" Vq» dr SF,(q»
o

for every t E T and every (j) E $N'
Let C and K(t, r) be the N x N matrices with entries

Cmn <CV(j)n, Vq>m)'

Kmn(t, r) < K(t. r)Vq>n' Vq>m>'

and let /X(t) and f(t) be the N x I column vectors with entries tl.n{t) and

fn(t) = SF,(q>n) - <CVh~. Vq>n) - {<K(t, r)Vh~, VCPn) dr.
o

It then follows that (3.5) is equivalent to the integral equation

C/X(t) + { K(t. 1")/X(,) d1" = f(t).

(3.5)

(3.6)

(3.7)

(3.8)

Existence theorem. If j #: </1, a unique continuous-time Galerkin solution for c.§N exists.
If {) </1, a solution always exists, but need not be unique; however, any two solutions differ
at most by a rigid motion.

We postpone, until Section 4, the proofs of both this and the next theorem.
We now consider a sequence {CSN}, where each CSN = CS(hN

• $N) is an approximation space
of dimension N. We say that {CSN } is complete if given any kinetically admissible field k
there exists a sequence {gN} with gN E r;}N such that

(3.9)

uniformly for t in any bounded subinterval of T. When this is the case {gN} is an approxima
ting sequence for k.

Convergence theorem. Let u be a weak solution to the boundary-value problem, and, for
each N, let UN be a continuous-time Galerkin solutionfor '!fN • Assume that the sequence {CSN}

is complete. Then there exists a sequence {rN} ofrigid motions such that

I\u, -- u~ r~11 W(BI -> 0 as N -~ 00

for all t E T. Moreover, rN may be set equal to zero when J #: ¢.t

(3.10)

t The variational principle established by Gurtin ([12]. eq. (3.12)) for the classical quaSi-static problem,
when applied in the usual manner to an approximate solution of the form (3.1), leads to the continuous-time
Galerkin approximation (3.5).

t We could set eN = 0 when d 4> if both u and the basis functions <P1,<pz, ... , <PH for each ~N were
normalized (cf. (4.31)). A normalization of this type is utilized by Chou[l3] to establish a convergence
theorem appropriate to elastostatics.
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4. ANALYSIS

JV" = null space of C,

,'Il = range of C.

Lemma 1. (i) C is symmetric.
(ii) f!ll = .Ai.L.

(iii) % = {J-. E RN
: L An c'n is rigid}.

n

(iv) The range ofK(t, r) lies in .N'J..
(v) .A/' lies in the null space ofK(f, T).

(vi) f(t) E %i whenet>eY j = 4>.

Proof Assertion (i) follows from (2.4) and (3.6)1 ; and (i), in turn, implies (ii).
To establish (iii) assume that

Then. letting

W = L A.n (j)n ,
n

we conclude, using (3.6)1' that

0= L Cmn)'m 1" = <CVw, Vw).
m,n

Thus by (2.5),

Vw =0

(4.1)

(4.2)

(4.3)

(4.4)

and w is rigid. Conversely, assume that w, given by (4.2), is rigid. Then, by (3.6)1 and (4.4),

L CmnAn = (CVw, Vc,m) = 0, (4.5)
n

so that A E Jr". Thus (iii) holds.
Similarly, if A. E .Ai, and if w is the rigid displacement (4.2), then (3.6)z and (4.4) imply

that

L 1mKmn(t, r) = 0,
m

L Kmit, <)1" = 0,
n

(4.6)

and these results yield (iv) and (v).
Again, choose A E % and let w be given by (4.2). Then, if ,1 = cP, (2.11), (3.7), (4.4) and

(2.6) imply that

LAn h(t) = r St' w + f bt ' w = 0, (4.7)
" 'oB B

so that f(t) E %.1. This completes the proof of Lemma 1.
Proof of the existence theorem. By (2.11), (Al ), (A2), the fact that hN

E f/, and the
definition of the solution space f/, the function f defined by (3.7) is piecewise continuous
on T. Thus, if a solution IX of (3.8) exists, then IX must also be piecewise continuous on T;
and, since hN E f/ and each «p" E WeB}, it is clear that the field v, defined by (3.1) (or (3.3»,
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will be a member of the solution space [I? and hence of f§N' Therefore, to establish the exis
tence of a continuous-time Galerkin solution v for f§N' it suffices to establish the existence
of a solution rt of (3.8).

Assume first thatJ #- cPo It suffices to show that C- 1 exists, for then (3.8) reduces to an
integral equation for rt. By (iii), if CA = 0, then w, defined by (4.2), must be rigid. But w
must vanish on J, since each <Pn has this property; thus, in view of the remark made in
Section 1, W = 0, and, as {<Pn} is a basis for <l>N' this implies that each An must vanish. Thus
in this instance % = {O} and C is invertible.

Assume next that J = cPo It follows from (ii) that C: fJIt -> fJIt, the restriction of C to fJIt, is
invertible. Let K(t, 'L) denote the restriction ofK(t, 'L) to fJIt. By (ii) and (iv), K(t, 'L): fJIt -> fJIt.
It therefore follows from (vi) that the integral equation

Crt(t) + f K(t, r)rt(r) dr = f(t)
o

has a unique solution rt: T -> fJIt. Trivially, rt is also a solution of our original equation (3.8).
We have only to show that when J = cP any two solutions of (3.8) differ by a rigid motion.

Thus let rt denote the difference between two such solutions, so that

Let

Crt(t) +rK(t, r)rt(r) dr = O.
o

(4.8)

rt(t) = A(t) + pet), A(t) E %, P(t)E%J.. (4.9)

Then, since % is the null space of C, (ii), (v), (4.8), and (4.9) imply that p is the unique
solution of

Cp(t) +rK(t, r)p(r) dr = O.
o

Thus P= 0, and we conclude from (4.9) and (iii) that

w(x, t) = I IXn (t)<Pn(X)
n

(4.10)

(4.11)

is a rigid motion. This completes the proof.
Lemma 2. Let IX, 13, y: T -> [0, (0) with IX and 13 piecewise continuous and y monotone

increasing. Assume that

IX(t) :::; {3(t) + y(t) f IX(U) da
o

for all t E T. Then

IX(t) :::; {3(t) + yet)re(t-a)y(t){3(u) du
o

for all t E T.
Proof Choose t E T arbitrarily. Since y is monotone increasing,

IX(r) :::; {3('L) + y(t) f IX(U) du
o

(4.12)

(4.13)

(4.14)
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for all r E [0, t], and we may conclude from Gronwall's inequalityt that

a(r) s f3(r) + y(t) re(r-~}y(t)f3«J) d(J
'0

for all r E [0, t]. In particular, if we take 1: t we arrive at (4.13).
Let D: WeB) x WeB) -+ R be defined by

D(v. w) <CVv, Vw).

(4.15)

(4.16)

Then, as is clear from (AI)' D is symmetric, bilinear. and positive semi-definite. In fact if
we define

then (2.7) implies that

D(v) = D(v, v), (4.17)

(4.18)

for every v E WeB). Further,.(AI ) and the definition of the solution space .9'yield the following
implication:

WE .9' => t -+ D(wt ) is piecewise continuous.

Lew.ma 3. Let WE .9', fP E <D. Then given any a > 0

where

I
met) = - sup IK(x, t, r) I·

I( ix,rjEB,rO.tJ

(4.19)

(4.20)

(4.21)

Proof Let 11'11 = 11'11 L,( B)' Then

2 It <K(f. r)Vwp VfP) dT S 2Km(t) ruvwrll \iV<p1l dr,
o 0

S Km(t) f~ !a11Vw,112 + ~ II V<p II 2Jdr, (4.22)

where we have used the inequality

The desired result (4.20) follows from (4.18) and (4.22).
Lemma 4. Let u be a weak solution. and let v be a continuous-time Galerkin solution for

'!iN' Further, let g E '!iN be arbitrary, and let

t See, e.g. Reid[14], p. 13.

p =U - g. q =V - g. (4.23)
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Then given any to E T there exists a number co(to) such that
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D(qt) ~ Co(to) sup D(pt) (4.24)t
tE[O. toJ

for all t E [0, tol.
Proof Since <1>N c <1>, it follows from (2.12), (3.5), (4.16) and (4.23) that

D(qt, cp) + ft<K(t, r)Vq" Vcp) dr = D(Pn cp) + {<K(t, r)Vp" Vcp) dr (4.25)
o 0

for all cp E <1>N' Since both v and g belong to <§N, it is clear from (3.4) and (4.23h that
qt E <1>N' If we take cp in (4.25) equal to qt' and use the inequality

(4.26)

and (4.20) (first with w = q, cp = qt' then with w = p, cp = qt), we arrive at the inequality

(4.27)

(4.28)

where IX > 0 is arbitrary. Since we are at liberty to let IX in (4.27) depend on t, we can take
IX = 4tm(t) for tm(t) =1= O. Then, letting

y(t) = 8tm2(t),

f3(t) = 2D(pt) + y(t) {D(Pt) dr,
o

we conclude that

D(qt) ~ f3(t) + y(t) {D(qt) dr,
o

(4.29)

for tm(t) =1= O. By (4.27), (4.29) also holds when tm(t) = 0; hence (4.29) holds for all t E T.
It is clear from (4.21) and (4.28)1 that y is non-negative and monotone increasing. Further,
since D is positive semi-definite, ct(t) = D(qt) ~ 0 and f3(t) ~ 0, while (4.19) implies that IX

and f3 are piecewise continuous on T. Thus we may use Lemma 2 to arrive at

D(qt) ~ f3(t) + y(t) { e(t-t)y(t)f3(r) dr.
o

Clearly, (4.30) and (4.28) imply (4.24), and the proof is complete.
A field cp E W(B) is normalized if

(4.30)

f cp = 0,
B

(4.31)

It is not difficult to show that if cp is rigid and normalized, then cp = O. Further, for any
cp E WeB) there exists a unique rigid displacement r such that cp + r is normalized; in this
case" we say that r normalizes cpo

t This inequality is the crucial step in the proof of convergence. In this regard see Aubin[l5). p. 132.
Douglas and Dupont[16), and Price and Varga[17), who utilize an analysis of this type for parabolic
problems.
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Lemma 5. (Korn's Inequality).t There exists a positive constant c such that

. 11<p11ij,.(B):::; cD(<p) (4.32)

for each <p E <1>, provided <p is normalized if oJ = 1>.
Proof of the convergence theorem. Let {gN} be an approximating sequence for u (such a

sequence exists since {'§N} is complete), and let

(4.33)

Then (3.9) with k = u asserts that

IIp~llw(B)""""'O as N......,.. 00

uniformly on any bounded interval of T. Thus, since
~ N NIIVpt IIL2(B):::; Ilpt Ilw(B),

we conclude from (4.18) and Lemma 4 that

D(q~)""""'O as N......,.. 00.

(4.34)

(4.35)

(4.36)

Let r N be the rigid motion with the following property: rN = 0 if oJ =I 1>; ~ normalizes
q~ at each t E T if J = 1>. By the remarks made in the paragraph containing (4.25), it is clear
that q~ E <1>. Thus we conclude from Korn's inequality (Lemma 5) and (4.36) that

Ilq~ + r~llw(B)""""'O as N......,.. 00. (4.37)

Here we have used the fact that, because rN is rigid, D(q~ + r~) = D(q~). Next, by (4.33),

Ilut - u~ - r~llw(B) = lip;'" - q~ - r~lIw(B):::; Ilp~llw(B) + Ilq~ + r~lIw(B)' (4.38)

and (4.34), (4.37) and (4.38) imply (3.10). This completes the proof of the convergence
theorem.
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A6cTpaKT - MeToA cjJHHHTHoro 3JIeMeHTa rrOCJIeAHHX JIeT ycrreuIHo rrpHMeHJlJICJl Knp06JIeMaM
rpaHH'IHOrO 3Ha'leHHJI B rrpeAeJIax KBa3HCTaTH'IeCKOH TeopHH Ba3KOyrrpyrOCTH. MeToA cjJHHHT
Horo 3JIeMeHTa, rrpHMeHJleMhIH rrpH 3THX yCJIOBHJlX, JlBJIJleTCJl CneI.\HarrhHhIM CJIY'!aeM, Ha
KOTOphiH Terreph CChIJIalOTCli KaK MeTOA HerrpephIBHoro BpeMeHH rarrepKHHa. B HaCTOJImeH
pa60Te YCTaHaBJIHBalOT KOHBepreHI.\HlO 3Toro MeTOAa. nOJIY'!eHHhle pe3YJIhTaThI )],OCTaTO'IHO
o6mHe AJIJI BKJIlO'IeHHJI TepMoBJl3KoyrrpyrHx TBep)],hIX TeJI no)], BJIHJlHHeM rrpeArrHCaHHoro,
3aBHCHMoro OT BpeMeHH, TeMneparypHoro rrOJIli.


