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Abstract—This paper establishes the convergence of the continuous-time Galerkin technique
as applied to quasi-static, linear viscoelasticity.

INTRODUCTION

In recent years the finite element method has been successfully applied to boundary-value
problems within the quasi-static, linear theory of viscoelasticity[1-5]. The finite element
method, as applied in these circumstances, is a special case of what is now referred to as the
continuous-time Galerkin technique. In this paper we establish the convergence of this
technique. Our results are sufficiently general to include thermoviscoelastic bodiest under
the influence of a prescribed time-dependent temperature field.

1. NOTATION

Throughout this paper B designates a (compact) properly regular[6. 7] region of three-
dimensional Euclidean space, while 4 and s, are complementary closed regular[7} subsur-
faces of the boundary éB of B:

OB = 4 U gy, IN Je =0 (L.1)

Let v denote the inner product space (translation space) associated with Euclidean space;
u - v is the inner product of u, v € v. We use the term tensor as a synonym for “ linear trans-
formation from v into v.”’ A tensor A is symmetric if A = AT, skew if A = —AT; here AT
denotes the transpose of A. For convenience, we write

Sym = the space of symmetric tensors.
The inner product of two tensors A and B is defined by
A - B = r(AB”), (1.2)

where tr denotes the trace.
Given a vector field u on B, we write Vu for its generalized gradient [8] and

Vu = 1(Vu + vu") (1.3)

1 E.g. thermorheologically simple viscoelastic bodies.
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for its generalized symmetric gradient. Further,
W(B) = Wi(B) (1.4)

is the Sobolev space consisting of all vector fields u on B such that both u and Vu belong to
L,(B); the norm of u € W(B) is, of course, defined by

”““vzwm = |ul fg(B) + Iqulliz‘m, (1.5)

where
lulZ,m=fu-u.  [Vulie= [ vu-va (1.6)
B B

are the L,(B) norms of u and Vu.
Given two tensor fields A, B € L,(B) we write

(A, B) = fA-B, (1.7)
B
so that
(A A = [Al L - (1.8)
A vector field r on B is a rigid displacement field if it admits the representation
r(x) = a + W[x — x,], (1.9)

where a is a vector, W a skew tensor, and x, a point. As is well known, r € W(B) is rigid if
and only iff
Vr=0. (1.10)

Remark.] If s # ¢, and if v is a rigid displacement field that vanishes on s, then r = 0.
We will frequently deal with functions W(x, ¢) of position x € B and time ¢ € T, where 7 is
an interval of the reals, R. For such a function we write ¥, for the field on B defined by

Y, (x) =¥(x, 1). (1.1D

Finally, a rigid motion is a vector field r on B x T with r, a rigid displacement for each
teT.

2. THE BOUNDARY-VALUE PROBLEM—WEAK SOLUTIONS

The fundamental system of deld equations for a linear viscoelastic solid consists of the
equation of equilibrium
divS+b=0 (2.1)
and the constitutive relation§

Sx, 1) = S(x. £) + Cx)Vu(x, t) + ftK(x, t, T)Vu(x, 1) dr. 2.2)
0

¥ For smooth fields this result is well known; for functions in W{(B) see, e.g. Fichera[6], p. 384 and
Hlavadek and Netas[9], Lemma II.1.

i See, e.g. Hlavadek and Netas[9], Lemma I1.3. (Note that since ¢ is a regular subsurface of 9B, if s &b,
then 5 # ¢.) . .

§ In the usual quasi-static theory S = 0 and K(x, f, 7) = K(x, ¢ — 7). The field S is the stress that would be
present in the material if the strain Qu were zero for t > 0. Its presence allows for the possibility of a prescribed
non-zero strain history up to time ¢ = 0. Also, the general theory presented here includes, as a special case,
thermoviscoelastic materials in situations for which the temperature field is known a priori.
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Here u is the displacement field, S is the stress field, S is the residual stress field, and b is the
body force field. The fields € and K are material response functions; they describe, respec-
tively, the instantaneous and the delayed response of the material. The field equations (2.1)
and (2.2) must be satisfied at every x € B and for all e T, where B is the region of space
occupied by the body, and T is a (possibly infinite) time-interval of the form [0, ).

To these field equations we adjoin the boundary conditions

u=h on ox7T, Sn=s on 4, xT, (2.3)

where h and s are, respectively, the prescribed surface displacement and surface traction, and
n is the outward unit normal to ¢B.

The boundary-value problem under consideration consists in the following: given:
C, K.b, S, h,s; find: fields u and S that satisfy (2.1-2.3). For convenience, we assume, once
and for all, that:

{4,) C(x) (for x € B) and K(x, ¢, 7) (for xe B and 0 < 7 < ¢ < w0} are linear transforma-
tions from Sym into Sym; C(x) is symmetric and positive definite,} that is,

A-C(x)B =B-C(x)A (2.4)
for all A, B € Sym and there exists a constant x > 0 such that
A-Cx)A>kA-A (2.5)

for all A € Sym; the mappings x — C(x) and (x, 7, 7) > K(x, ¢, 7) are continuous.

(A4,) S =87, and the mappings ¢ — é,, t+b,, t—h,, and 71— s, on T have values in
L,(B), L,(B), L,(s), and L,(s,), respectively, and (as L,-valued mappings) are piecewise
continuous.

(A43;) When s = ¢ (so that s, = 0B) the prescribed loads are in equilibrium; that is,

faBs-r+fBb-r=0 (2.6)

for every rigid displacement r.}
Note that, by (2.5) and the continuity of C on B, there exists a constant k, = x such that
for every function A: B — Sym belonging to L,(B)

Kkl A5 < <A, CA> < K(]|AlZ,(s)- 2.7
We call
O={pec W(B):¢=00nd} (2.8)

the variation space; fields ¢ € @ will be referred to as variations. It is important to note that
each variation is a function of x alone.

Now let u(x, ¢) and S(x, ¢) constitute a sufficiently smooth solution to the boundary-value
problem (2.1-2.3), and let @(x) be a variation. By (4,), (4,) and (2.2), S is symmetric;
therefore

(divS,) * @ = div(S,9) — S, - Vo, (2.9)

t Coleman[10] has shown that C(x) positive semi-definite and symmetric is a consequence of the second
law of thermodynamics. Gurtin and Herrera[11] have shown that C(x) positive definite and symmetric
follows from the requirement that work be done to deform the body from an equilibrium state.

s 1‘.3)’['his is equivalent to the usual force and moment balance equations for B (c.f., e.g. Gurtin[7], Theorem
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where we have used the notation (1.11). If we take the inner product of (2.1) with ¢, integrate
over B, and use the divergence theorem in conjunction with (2.3),, (2.8). {2.9) and (1.7). we
arrive at

S, Vo) = | s, 0+ [ b, @, (2.10)
Yok B
Thus, if we define
f‘F,((p)z‘s,-(p+"b,-q)~fé,-@’q>.' (2]1)
Yoy “B B

then (2.2) and (2.10) imply that

(CVu,, Vo) + [ (K(t. 1)Vu,. Vo) dt = Z,(¢). (2.12)

O

where we have written K(¢, 1) for the field on B with values K(z, 7, x). so that
CK(t. 1)V, Ve = f [Kiz. 7, \)Va(x. )] - Vo(x) dx. (2.13)
B

We have shown that every sufficiently smooth solution of (2.1-2.3) satisfies (2.12) for every
t and every variation @. Conversely, (for sufficiently smooth data) it is not difficult to verify
that every sufficiently smooth field u that satisfies (2.3), and (2.12) for every ¢ and every
variation @ is a solution to the original problem (2.1-2.3). This should serve to motivate
the following definitions.

By the solution space we mean the space & of all vector fields u on B x 7 such thatn, €
W(B) at each t € T and ¢ — Vu,. as a mapping from T into L,(B), is piecewise continuous.
A field u € & that satisfies

u=h on .xT (2.14)

is kinematically admissible. A weak solution is a kinematically admissible field u that satisfies
(2.12) for every t € T and every variation @.

3. THE CONTINUOUS TIME GALERKIN APPROXIMATION

Let @, be an N-dimensional subspace of ®, let ¢,. ¢, . ..., @y be a basis for &y, and let
hY € . We consider approximations of the form

N
v(x. 1) = hNMx. ) + Y 2,(0@,x). (3.1
ne

In applications {¢,} and h" are prescribed fields: the ¢, are basis functions, e.g. for the
finite element method, while h? is chosen to approximate h on s x 7. Indeed, since ®Y < @,
each @, = 0 on .. and (3.1) implies that

v=hY on .xT (3.2)

When s is empty we omit the function h" and consider approximate solutions of the form

N
VX, 1) = 3 o, (D@,(x). (3.3)
n=1
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Thus let
Gy = %", @) ={ve &: v has the form (3.1) {or (3.3) if s = ¢)}. (3.4)

We call 4, an approximation space of dimension N. By a continuous-time Galerkin solution
for ¥y we mean a function v e 9, that satisfiest

(€, V) + [ (K(t, 1), Vo) dt = #,(9) (3.5)
0

for every t € T and every ¢ € &y .
Let C and K(z, 7} be the N x N matrices with entries

Cow = {CVg,. Vo,>.

.o (3.6)
Kot 1) = (K1, 1)V, Vo,).
and let af¢) and () be the N x | column vectors with entries «,{¢) and
4
1) = # (o) ~ <CYBY. Vo,) — [ (K(t, 0hY, o, dr. (37)
It then follows that (3.5) is equivalent to the integral equation
f
Calt) + | Kur, vha(z) de = £(0). (3.8)
0

Existence theorem. [f s # ¢, a unique continuous-time Galerkin solution for 9y exists.
If o = ¢, a solution always exists, but need not be unigue; however, any two solutions differ
at most by a rigid motion.

We postpone, until Section 4, the proofs of both this and the next theorem.

We now consider a sequence {%,}, where each 4, = %(h", @) is an approximation space
of dimension N. We say that {#,} is complete if given any kinetically admissible field k
there exists a sequence {g"} with g" € %, such that

Ik, ~ gllwp — 0 as N— oo (3.9)

uniformly for 7 in any bounded subinterval of 7. When this is the case {g"} is an approxima-
ting segunence for k.

Convergence theorem. Ler u be a weak solution to the boundary-value problem, and, for
each N, let w" be a continuous-time Galerkin solution for % . Assume that the sequence (%)}
is complete. Then there exists a sequence {t"} of rigid motions such that

lo, —uf ~ 1w — 0 as N - (3.10)

for all t € T. Moreover, t" may be set equal to zero when s # ¢.}

1 The variational principle established by Gurtin ([12], eq. (3.12)) for the classical quasi-static problem,
when applied in the usual manner to an approximate solution of the form (3.1), leads to the continuous-time
Galerkin approximation {3.5).

1 We could set r¥ —0 when o= ¢ if both u and the basis functions @,¢;, ...,y for each @y were
normalized (cf. (4.31)). A normalization of this type is utilized by Chou{13] to establish a convergence
theorem appropriate to elastostatics.
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4. ANALYSIS
Let
A" = null space of C,
# = range of C.

Lemma 1. (i) C is symmetric.
(i) # =N
(i) A ={heR":Y A0, isrigid).
(iv) The range of K(1, ©) fies in A+,
(v} A lies in the null space of K(1, ©).
(vi) (1) e A whenever 5 = ¢.

Proof. Assertion (i) follows from (2.4) and (3.6}, ; and (i), in turn, implies (ii).
To establish (i) assume that

an Con o = 0. 4.1)
Then, letting
w=nZi,,(p,,, (4.2)
we conclude, using {3.6),, that
0 :mzn Coun A A = {CVw, V). 4.3)
Thus by (2.5),
Vw =0 4.4)

and w is rigid. Conversely, assume that w, given by (4.2), is rigid. Then, by (3.6), and (4.4),
Y. Condn = (CVW, Vg,> =0, (4.5)

so that & € 4. Thus (iii} holds.
Similarly, if & € 4", and if w is the rigid displacement (4.2), then (3.6), and (4.4) imply
that

Y A Kt =0, Y Kt DA, =0, (4.6

and these results yield (iv) and {v).
Again, choose & € " and let w be given by (4.2). Then, if ¢ = ¢, (2.11), (3.7), (4.4) and
{(2.6) imply that

Z/l,,ﬁ,(t)mLBst'WJrfBb,'w::(), (4.7)

0 that f(z) € 4™+ This completes the proof of Lemma 1.

Proof of the existence theorem. By (2.11), (A,), (A,), the fact that h¥ € &, and the
definition of the solution space &, the function f defined by (3.7) is piecewise continuous
on T. Thus, if a solution o of (3.8) exists, then & must alsc be piecewise continuous on 77;
and, since b € & and each @, € W(B), it is clear that the field v, defined by (3.1) (or (3.3)),
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will be a member of the solution space & and hence of % . Therefore, to establish the exis-
tence of a continuous-time Galerkin solution v for 4, it suffices to establish the existence
of a solution & of (3.8).

Assume first that s # ¢. It suffices to show that C™! exists, for then (3.8) reduces to an
integral equation for a. By (iii), if CA = 0, then w, defined by (4.2), must be rigid. But w
must vanish on 4, since each ¢, has this property; thus, in view of the remark made in
Section 1, w = 0, and, as {@,} is a basis for @, this implies that each A, must vanish. Thus
in this instance A4 = {0} and C is invertible.

Assume next that s = ¢. It follows from (ii) that C: # — %, the restriction of C to £, is
invertible. Let K(z, t) denote the restriction of K(, 7) to #. By (ii) and (iv), K(t, 7): # — .
It therefore follows from (vi) that the integral equation

Ca(t) + f K(z, ya(r) dv = f(r)
4]

has a unique solution &: 7 — . Trivially, a is also a solution of our original equation (3.8).
We have only to show that when s = ¢ any two solutions of (3.8) differ by a rigid motion.
Thus let o denote the difference between two such solutions, so that

Ca(t) + f "K(, Dt de =0, (4.8)
0

Let
a(t) = A1) + B(), Me N, B(H)e & 4.9)

Then, since 4 is the null space of C, (ii), (v), (4.8), and (4.9) imply that B is the unique
solution of .

CB(1) + j; R(z, 0B(z) dt = 0. (4.10)
Thus § = 0, and we conclude from (4.9) and (ii1) that
w(x, 1) = ; %, ()@,(X) (4.11)
is a rigid motion. This completes the proof.

Lemma 2. Let o, B, y: T — [0, o) with a and B piecewise continuous and y monotone
increasing. Assume that

a(t) < () + 3(?) f ' (o) do (4.12)
0
forallteT. Then
a(t) < B(t) + ¥(t) fo et~ 0B(5) do (4.13)

forallteT.
Proof. Choose t € T arbitrarily. Since y is monotone increasing,

a(7) < B(e) + 9(0) jo «(c) do (4.14)
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for all t € [0, 7], and we may conclude from Gronwall’s inequalityt that
alr) < BD) + 9(0) { (c=Mup(g) do (4.15)
for all 7 € [0, ¢]. In particular, if we take t = ¢ we arrive at (4.13).
Let D: W(B)x W(B) — R be defined by
D(v. w) = (CVv, Vw). {4.16)

Then, as is clear from {4,), D is symmetric, bilinear. and positive semi-definite. In fact, if
we define

D(¥) = D(v, v), (4.17)
then (2.7) implies that
) VVilom < DOV) < 5, VVIE 5 4.18)

for every v e W(B). Further,(4,) and the definition of the solution space & vield the following
implication:

w e ¥ =t — D(w,) is plecewise continuous. {4.19}

Lemma 3. Let we &, ¢ € ©. Then given any « > 0

t t
2 f K, )W, Vo) dr < m(1) [‘_ D(9) + a f D(w,) dt} , (4.20)
0 a£ 0
where
i
m(t) = — sup  [K(x, t, 9)]. (4.21)
Ki(x,10eBx{0,1]
PrOOf. LCt ”'” = “‘“1‘2(8)‘ Then
zja((z 1)Vw,, Vo) dr < 2m(:)j w,| Vel dr,
- | BN
< km(1) f cxﬂVerz +- }gw;iz} dr, (4.22)
0

where we have used the inequality
i
2ab < aa® + - b
o
The desired result (4.20) follows from (4.18) and (4.22).

Lemma 4. Let u be a weak solution. and let v be a continuous-time Galerkin solution for
%, . Further, let g € %, be arbitrary, and let

p=u—g, g=v-—g. (4.23)

+ See, e.g. Reid[14], p. 13.
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Then given any ty € T there exists a number cy(t,) such that

D(q,) < colty) sup D(p.) (4.24)%

te{0, to]

for all t € [0, t,].
Proof. Since ®, < @, it follows from (2.12), (3.5), (4.16) and (4.23) that

D@, @)+ [ CK(t D9a., 99) dr = D @) + [ <Kt 90p., Fod dr (@29

for all @ € ®. Since both v and g belong to ¥, it is clear from (3.4) and (4.23), that
q, € Dy . If we take ¢ in (4.25) equal to q,, and use the inequality

2D(p,, q,) < D(p) + D(q,) (4.26)

and (4.20) (first with w =q, ¢ =q,, then with w = p, ¢ =gq,), we arrive at the inequality

2 t
D(a) < D(B) + m()| 2 D(a) + « [ [0(a) + D(p) e, @)

where a > 0 is arbitrary. Since we are at liberty to let « in (4.27) depend on ¢, we can take
o = 4tm(t) for tm(t) # 0. Then, letting

y(1) = 8em?(),

r (4.28)
Be) =2D(p) +7(1) [ D(p.) d,
we conclude that

D@) < B0) + 70 | Dia) d, (4.9)

for tm(t) # 0. By (4.27), (4.29) also holds when tm(t) = 0; hence (4.29) holds for all t € T..
It is clear from (4.21) and (4.28), that y is non-negative and monotone increasing. Further,
since D is positive semi-definite, a(f) = D(q,) > 0 and f(¢) > 0, while (4.19) implies that «
and f are piecewise continuous on 7. Thus we may use Lemma 2 to arrive at

D(g) < Bt) + 1) | - IOp(r) de, (4.30)

Clearly, (4.30) and (4.28) imply (4.24), and the proof is complete.
A field @ € W(B) is normalized if

o =0, (Vo — VoT) = 0. (4.31)
B B

It is not difficult to show that if ¢ is rigid and normalized, then ¢ = 0. Further, for any
@ € W(B) there exists a unique rigid displacement r such that ¢ + r is normalized; in this
case we say that r normalizes ¢.

t This inequality is the crucial step in the proof of convergence. In this regard see Aubin[15], p. 132,
Douglas and Dupont{16], and Price and Varga[17], who utilize an analysis of this type for parabolic
problems.
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Lemma 5. (Korn’s Inequality).t There exists a positive constant ¢ such that

) ”(P“%V(B) < cD(g) (4.32)

for each ¢ € @, provided @ is normalized if s = ¢.
Proof of the convergence theorem. Let {g"} be an approximating sequence for u (such a
sequence exists since {#,} is complete), and let

p’ =u—g", q¥ =u" —g". (4.33)

Then (3.9) with k = u asserts that

1P lwes =0 as N -0 (4.34)

uniformly on any bounded interval of 7. Thus, since

“VPMLZ(B) <1y ilwsy» (4.35)
we conclude from (4.18) and Lemma 4 that

D(g) -0 as N — . (4.36)

Let r" be the rigid motion with the following property: r¥ =0 if 4 # ¢; r¥ normalizes
q) ateach t e T'if 5 = ¢. By the remarks made in the paragraph containing (4.25), it is clear
that ¢¥ € ®. Thus we conclude from Korn’s inequality (Lemma 5) and (4.36) that

laY + riv”W(B) >0 as N ->o0. (4.37)
Here we have used the fact that, because r¥ is rigid, D(q¥ + r¥) = D(q"). Next, by (4.33),

flu, — “{v - l':N”W(B) =p} —q — r:v”W(Bl = ||va”W(B) + “‘lﬁv + rfv”W(B), (4.38)

and (4.34), (4.37) and (4.38) imply (3.10). This completes the proof of the convergence
theorem.
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AbcTpakT — MeTtoa GUHUTHOTO 3JIEMEHTA MOCIEAHUX JIET YCIEITHO TIPEMEHSCS K TpobieMam
TPAHUYHOTO 3HAUYCHUSA B IpEC/Iax KBa3UCTATHYECKOM TEOPHH Ba3KOYIIPYrocTd. Meron dpuHHT-
HOTO 3NEMEHTA, MPHMEHSEMBIA NPH 3THX YCIOBHSX, SBJIACTCS COCLUAANBHBIM CIydaeM, Ha
KOTODBIH TEIEPh CCHIJIAIOTCA KaK METOH HENPEPLIBHOrO BpeMeHH ['anepkuHa. B Hacrosmeit
paboTe ycTaHaBIMBAIOT KOHBEPIEHIHIO 3TOT0 MeToaa. IToTyYeHHbIE pe3yIbTaThl JOCTATOYHO
ofLme OiA BKIIOYEHHS TEPMOBA3KOYIPYTMX TBEDABIX TeJI MOA BIMAHHEM IIPEINMCAHHOTO,
3aBHCHMOTO OT BPEMEHH, TEMIEPATYPHOTO MO,



