Int. J. Solids Structures, 1974 Vol. 10, pp. 933-943. Pergamon Press. Printed in Gt. Britain.

THE GALERKIN METHOD AS APPLIED TO PROBLEMS IN VISCOELASTICITY

MORTON E. GURTIN and TERRANCE D. RALSTON

Department of Mathematics, Carnegie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania 15213, U.S.A.

(Received 12 July 1973)

Abstract—This paper establishes the convergence of the continuous-time Galerkin technique as applied to quasi-static, linear viscoelasticity.

INTRODUCTION

In recent years the finite element method has been successfully applied to boundary-value problems within the quasi-static, linear theory of viscoelasticity[1–5]. The finite element method, as applied in these circumstances, is a special case of what is now referred to as the continuous-time Galerkin technique. In this paper we establish the convergence of this technique. Our results are sufficiently general to include thermoviscoelastic bodies[†] under the influence of a prescribed time-dependent temperature field.

1. NOTATION

Throughout this paper B designates a (compact) properly regular[6, 7] region of threedimensional Euclidean space, while σ and σ_* are complementary closed regular[7] subsurfaces of the boundary ∂B of B:

$$\partial B = \mathfrak{z} \cup \mathfrak{z}_*, \quad \mathfrak{z} \cap \mathfrak{z}_* = \phi. \tag{1.1}$$

Let v denote the inner product space (translation space) associated with Euclidean space; $\mathbf{u} \cdot \mathbf{v}$ is the inner product of $\mathbf{u}, \mathbf{v} \in v$. We use the term tensor as a synonym for "linear transformation from v into v." A tensor \mathbf{A} is symmetric if $\mathbf{A} = \mathbf{A}^T$, skew if $\mathbf{A} = -\mathbf{A}^T$; here \mathbf{A}^T denotes the transpose of \mathbf{A} . For convenience, we write

Sym = the space of symmetric tensors.

The inner product of two tensors **A** and **B** is defined by

$$\mathbf{A} \cdot \mathbf{B} = tr(\mathbf{A}\mathbf{B}^T), \tag{1.2}$$

where tr denotes the trace.

Given a vector field **u** on **B**, we write $\nabla \mathbf{u}$ for its generalized gradient [8] and

$$\widehat{\nabla}\mathbf{u} = \frac{1}{2}(\nabla\mathbf{u} + \nabla\mathbf{u}^T) \tag{1.3}$$

† E.g. thermorheologically simple viscoelastic bodies.

for its generalized symmetric gradient. Further,

$$W(B) = W_2^1(B) \tag{1.4}$$

is the Sobolev space consisting of all vector fields **u** on *B* such that both **u** and ∇ **u** belong to $L_2(B)$; the norm of $\mathbf{u} \in W(B)$ is, of course, defined by

$$\|\mathbf{u}\|_{W(B)}^{2} = \|\mathbf{u}\|_{L_{2}(B)}^{2} + \|\nabla\mathbf{u}\|_{L_{2}(B)}^{2}, \qquad (1.5)$$

where

$$\|\mathbf{u}\|_{L_2(B)}^2 = \int_B \mathbf{u} \cdot \mathbf{u}, \qquad \|\nabla \mathbf{u}\|_{L_2(B)}^2 = \int_B \nabla \mathbf{u} \cdot \nabla \mathbf{u}$$
(1.6)

are the $L_2(B)$ norms of **u** and $\nabla \mathbf{u}$.

Given two tensor fields A, $\mathbf{B} \in L_2(B)$ we write

$$\langle \mathbf{A}, \mathbf{B} \rangle = \int_{B} \mathbf{A} \cdot \mathbf{B},$$
 (1.7)

so that

$$\langle \mathbf{A}, \mathbf{A} \rangle = \|\mathbf{A}\|_{L_2(B)}^2. \tag{1.8}$$

A vector field **r** on B is a **rigid displacement field** if it admits the representation

$$\mathbf{r}(\mathbf{x}) = \mathbf{a} + \mathbf{W}[\mathbf{x} - \mathbf{x}_0],\tag{1.9}$$

where **a** is a vector, **W** a skew tensor, and \mathbf{x}_0 a point. As is well known, $\mathbf{r} \in W(B)$ is rigid if and only if[†]

$$\widehat{\nabla} \mathbf{r} = \mathbf{0}.\tag{1.10}$$

Remark.[‡] If $s \neq \phi$, and if **r** is a rigid displacement field that vanishes on s, then **r** = **0**. We will frequently deal with functions $\Psi(\mathbf{x}, t)$ of position $\mathbf{x} \in B$ and time $t \in T$, where T is

an interval of the reals, R. For such a function we write Ψ_t for the *field* on B defined by

$$\Psi_t(\mathbf{x}) = \Psi(\mathbf{x}, t). \tag{1.11}$$

Finally, a rigid motion is a vector field \mathbf{r} on $B \times T$ with \mathbf{r}_t a rigid displacement for each $t \in T$.

2. THE BOUNDARY-VALUE PROBLEM-WEAK SOLUTIONS

The fundamental system of field equations for a linear viscoelastic solid consists of the equation of equilibrium

$$\operatorname{div} \mathbf{S} + \mathbf{b} = \mathbf{0} \tag{2.1}$$

and the constitutive relation§

$$\mathbf{S}(\mathbf{x},t) = \mathbf{\mathring{S}}(\mathbf{x},t) + \mathbf{C}(\mathbf{x})\widehat{\nabla}\mathbf{u}(\mathbf{x},t) + \int_{0}^{t} \mathbf{K}(\mathbf{x},t,\tau)\widehat{\nabla}\mathbf{u}(\mathbf{x},\tau) \,\mathrm{d}\tau.$$
(2.2)

 \dagger For smooth fields this result is well known; for functions in W(B) see, e.g. Fichera[6], p. 384 and Hlaváček and Nečas[9], Lemma II.1.

‡ See, e.g. Hlaváček and Nečas[9], Lemma II.3. (Note that since σ is a regular subsurface of ∂B , if $\sigma \neq \phi$, then $\beta \neq \phi$.)

§ In the usual quasi-static theory $\mathbf{\hat{S}} = \mathbf{0}$ and $\mathbf{K}(\mathbf{x}, t, \tau) = \mathbf{K}(\mathbf{x}, t - \tau)$. The field $\mathbf{\hat{S}}$ is the stress that would be present in the material if the strain $\nabla \mathbf{u}$ were zero for $t \ge 0$. Its presence allows for the possibility of a prescribed non-zero strain history up to time t = 0. Also, the general theory presented here includes, as a special case, thermoviscoelastic materials in situations for which the temperature field is known *a priori*.

Here **u** is the displacement field, **S** is the stress field, **Š** is the residual stress field, and **b** is the body force field. The fields **C** and **K** are material response functions; they describe, respectively, the instantaneous and the delayed response of the material. The field equations (2.1) and (2.2) must be satisfied at every $\mathbf{x} \in B$ and for all $t \in T$, where B is the region of space occupied by the body, and T is a (possibly infinite) time-interval of the form [0, a).

To these field equations we adjoin the boundary conditions

$$\mathbf{u} = \mathbf{h} \quad \text{on} \quad \mathbf{v} \times T, \qquad \mathbf{Sn} = \mathbf{s} \quad \text{on} \quad \mathbf{v}_* \times T,$$
 (2.3)

where **h** and **s** are, respectively, the prescribed surface displacement and surface traction, and **n** is the outward unit normal to ∂B .

The boundary-value problem under consideration consists in the following: given: **C**, **K**, **b**, $\mathbf{\ddot{S}}$, **h**, **s**; find: fields **u** and **S** that satisfy (2.1–2.3). For convenience, we assume, once and for all, that:

 $(A_1) \mathbf{C}(\mathbf{x})$ (for $\mathbf{x} \in B$) and $\mathbf{K}(\mathbf{x}, t, \tau)$ (for $\mathbf{x} \in B$ and $0 \le \tau \le t < \infty$) are linear transformations from Sym into Sym; $\mathbf{C}(\mathbf{x})$ is symmetric and positive definite, \dagger that is,

$$\mathbf{A} \cdot \mathbf{C}(\mathbf{x})\mathbf{B} = \mathbf{B} \cdot \mathbf{C}(\mathbf{x})\mathbf{A} \tag{2.4}$$

for all A, $B \in Sym$ and there exists a constant $\kappa > 0$ such that

$$\mathbf{A} \cdot \mathbf{C}(\mathbf{x}) \mathbf{A} \ge \kappa \mathbf{A} \cdot \mathbf{A} \tag{2.5}$$

for all $\mathbf{A} \in \text{Sym}$; the mappings $\mathbf{x} \mapsto \mathbf{C}(\mathbf{x})$ and $(\mathbf{x}, t, \tau) \mapsto \mathbf{K}(\mathbf{x}, t, \tau)$ are continuous.

 (A_2) $\dot{\mathbf{S}} = \dot{\mathbf{S}}^T$, and the mappings $t \mapsto \dot{\mathbf{S}}_t$, $t \mapsto \mathbf{b}_t$, $t \mapsto \mathbf{h}_t$, and $t \mapsto \mathbf{s}_t$ on T have values in $L_2(B)$, $L_2(B)$, $L_2(a)$, and $L_2(a_*)$, respectively, and (as L_2 -valued mappings) are piecewise continuous.

(A₃) When $\sigma = \phi$ (so that $\sigma_* = \partial B$) the prescribed loads are in equilibrium; that is,

$$\int_{\partial B} \mathbf{s} \cdot \mathbf{r} + \int_{B} \mathbf{b} \cdot \mathbf{r} = 0 \tag{2.6}$$

for every rigid displacement r.‡

Note that, by (2.5) and the continuity of **C** on *B*, there exists a constant $\kappa_1 \ge \kappa$ such that for every function **A**: $B \rightarrow$ Sym belonging to $L_2(B)$

$$\kappa \|\mathbf{A}\|_{L_2(B)}^2 \le \langle \mathbf{A}, \mathbf{C}\mathbf{A} \rangle \le \kappa_1 \|\mathbf{A}\|_{L_2(B)}^2.$$
(2.7)

We call

$$\Phi = \{ \mathbf{\varphi} \in W(B) \colon \mathbf{\varphi} = \mathbf{0} \text{ on } \mathbf{\beta} \}$$
(2.8)

the variation space; fields $\varphi \in \Phi$ will be referred to as variations. It is important to note that each variation is a function of x alone.

Now let $\mathbf{u}(\mathbf{x}, t)$ and $\mathbf{S}(\mathbf{x}, t)$ constitute a sufficiently smooth solution to the boundary-value problem (2.1–2.3), and let $\varphi(\mathbf{x})$ be a variation. By (A_1) , (A_2) and (2.2), S is symmetric; therefore

$$(\operatorname{div} \mathbf{S}_t) \cdot \boldsymbol{\varphi} = \operatorname{div}(\mathbf{S}_t \boldsymbol{\varphi}) - \mathbf{S}_t \cdot \hat{\nabla} \boldsymbol{\varphi}, \tag{2.9}$$

[†] Coleman[10] has shown that C(x) positive semi-definite and symmetric is a consequence of the second law of thermodynamics. Gurtin and Herrera[11] have shown that C(x) positive definite and symmetric follows from the requirement that work be done to deform the body from an equilibrium state.

 \ddagger This is equivalent to the usual force and moment balance equations for B (c.f., e.g. Gurtin[7], Theorem 18.3).

where we have used the notation (1.11). If we take the inner product of (2.1) with φ , integrate over *B*, and use the divergence theorem in conjunction with (2.3)₂, (2.8), (2.9) and (1.7). we arrive at

$$\langle \mathbf{S}_{t}, \hat{\nabla} \boldsymbol{\varphi} \rangle = \int_{J_{\star}} \mathbf{s}_{t} \cdot \boldsymbol{\varphi} + \int_{B} \mathbf{b}_{t} \cdot \boldsymbol{\varphi}.$$
(2.10)

Thus, if we define

$$\mathscr{F}_{t}(\boldsymbol{\varphi}) = \int_{\mathcal{S}_{t}} \mathbf{s}_{t} \cdot \boldsymbol{\varphi} + \int_{B} \mathbf{b}_{t} \cdot \boldsymbol{\varphi} - \int_{B} \mathbf{\mathring{S}}_{t} \cdot \widehat{\boldsymbol{\nabla}} \boldsymbol{\varphi}, \qquad (2.11)$$

then (2.2) and (2.10) imply that

$$\langle \mathbf{C}\hat{\nabla}\mathbf{u}_{t}, \hat{\nabla}\boldsymbol{\varphi} \rangle + \int_{0}^{t} \langle \mathbf{K}(t, \tau)\hat{\nabla}\mathbf{u}_{\tau}, \hat{\nabla}\boldsymbol{\varphi} \rangle d\tau = \mathscr{F}_{t}(\boldsymbol{\varphi}), \qquad (2.12)$$

where we have written $\mathbf{K}(t, \tau)$ for the field on B with values $\mathbf{K}(t, \tau, \mathbf{x})$, so that

$$\langle \mathbf{K}(t,\tau)\hat{\nabla}\mathbf{u}_{\tau},\hat{\nabla}\boldsymbol{\varphi}\rangle = \int_{B} [\mathbf{K}(t,\tau,\mathbf{x})\hat{\nabla}\mathbf{u}(\mathbf{x},\tau)] \cdot \hat{\nabla}\boldsymbol{\varphi}(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$
(2.13)

We have shown that every sufficiently smooth solution of (2.1-2.3) satisfies (2.12) for every t and every variation φ . Conversely, (for sufficiently smooth data) it is not difficult to verify that every sufficiently smooth field \mathbf{u} that satisfies $(2.3)_1$ and (2.12) for every t and every variation φ is a solution to the original problem (2.1-2.3). This should serve to motivate the following definitions.

By the solution space we mean the space \mathscr{S} of all vector fields \mathbf{u} on $B \times T$ such that $\mathbf{u}_t \in W(B)$ at each $t \in T$ and $t \to \hat{\nabla} \mathbf{u}_t$, as a mapping from T into $L_2(B)$, is piecewise continuous. A field $\mathbf{u} \in \mathscr{S}$ that satisfies

$$\mathbf{u} = \mathbf{h} \quad \text{on} \quad \forall \times T \tag{2.14}$$

is **kinematically admissible**. A weak solution is a kinematically admissible field **u** that satisfies (2.12) for every $t \in T$ and every variation φ .

3. THE CONTINUOUS TIME GALERKIN APPROXIMATION

Let Φ_N be an *N*-dimensional subspace of Φ , let $\phi_1, \phi_2, \ldots, \phi_N$ be a basis for Φ_N , and let $\mathbf{h}^N \in \mathcal{S}$. We consider approximations of the form

$$\mathbf{v}(\mathbf{x},t) = \mathbf{h}^{N}(\mathbf{x},t) + \sum_{n=1}^{N} \alpha_{n}(t) \boldsymbol{\varphi}_{n}(\mathbf{x}).$$
(3.1)

In applications $\{\varphi_n\}$ and \mathbf{h}^N are prescribed fields; the φ_n are basis functions, e.g. for the finite element method, while \mathbf{h}^N is chosen to approximate \mathbf{h} on $\mathcal{I} \times T$. Indeed, since $\Phi^N \subset \Phi$, each $\varphi_n = \mathbf{0}$ on \mathcal{I} , and (3.1) implies that

$$\mathbf{v} = \mathbf{h}^N \quad \text{on} \quad J \times T. \tag{3.2}$$

When σ is empty we omit the function \mathbf{h}^{N} and consider approximate solutions of the form

$$\mathbf{v}(\mathbf{x},t) = \sum_{n=1}^{N} \alpha_n(t) \boldsymbol{\varphi}_n(x). \tag{3.3}$$

Thus let

$$\mathscr{G}_{N} = \mathscr{G}(\mathbf{h}^{N}, \Phi_{N}) = \{ \mathbf{v} \in \mathscr{S} : \mathbf{v} \text{ has the form (3.1) (or (3.3) if } \boldsymbol{\upsilon} = \boldsymbol{\phi}) \}.$$
(3.4)

We call \mathscr{G}_N an approximation space of dimension N. By a continuous-time Galerkin solution for \mathscr{G}_N we mean a function $\mathbf{v} \in \mathscr{G}_N$ that satisfies[†]

$$\langle \mathbf{C}\hat{\nabla}\mathbf{v}_{t}, \hat{\nabla}\boldsymbol{\varphi} \rangle + \int_{0}^{t} \langle \mathbf{K}(t, \tau)\hat{\nabla}\mathbf{v}_{\tau}, \hat{\nabla}\boldsymbol{\varphi} \rangle \,\mathrm{d}\tau = \mathscr{F}_{t}(\boldsymbol{\varphi})$$
(3.5)

for every $t \in T$ and every $\boldsymbol{\varphi} \in \Phi_N$.

Let C and $\mathbf{K}(t, \tau)$ be the $N \times N$ matrices with entries

$$C_{mn} = \langle \mathbf{C} \hat{\nabla} \boldsymbol{\varphi}_n, \, \hat{\nabla} \boldsymbol{\varphi}_m \rangle, K_{mn}(t, \tau) = \langle \mathbf{K}(t, \tau) \hat{\nabla} \boldsymbol{\varphi}_n, \, \hat{\nabla} \boldsymbol{\varphi}_m \rangle,$$
(3.6)

and let $\alpha(t)$ and f(t) be the $N \times 1$ column vectors with entries $\alpha_n(t)$ and

$$f_n(t) = \mathscr{F}_t(\boldsymbol{\varphi}_n) - \langle \mathbf{C}\hat{\nabla}\mathbf{h}_t^N, \hat{\nabla}\boldsymbol{\varphi}_n \rangle - \int_0^t \langle \mathbf{K}(t,\tau)\hat{\nabla}\mathbf{h}_\tau^N, \hat{\nabla}\boldsymbol{\varphi}_n \rangle \,\mathrm{d}\tau.$$
(3.7)

It then follows that (3.5) is equivalent to the integral equation

$$\mathbf{C}\boldsymbol{\alpha}(t) + \int_0^t \mathbf{K}(t,\tau)\boldsymbol{\alpha}(\tau) \,\mathrm{d}\tau = \mathbf{f}(t). \tag{3.8}$$

Existence theorem. If $\sigma \neq \phi$, a unique continuous-time Galerkin solution for \mathscr{G}_N exists. If $\sigma = \phi$, a solution always exists, but need not be unique; however, any two solutions differ at most by a rigid motion.

We postpone, until Section 4, the proofs of both this and the next theorem.

We now consider a sequence $\{\mathscr{G}_N\}$, where each $\mathscr{G}_N = \mathscr{G}(\mathbf{h}^N, \Phi_N)$ is an approximation space of dimension N. We say that $\{\mathscr{G}_N\}$ is **complete** if given any kinetically admissible field **k** there exists a sequence $\{\mathbf{g}^N\}$ with $\mathbf{g}^N \in \mathscr{G}_N$ such that

$$\|\mathbf{k}_t - \mathbf{g}_t^N\|_{W(B)} \to 0 \quad \text{as} \quad N \to \infty \tag{3.9}$$

uniformly for t in any bounded subinterval of T. When this is the case $\{g^N\}$ is an **approximating sequence** for k.

Convergence theorem. Let **u** be a weak solution to the boundary-value problem, and, for each N, let \mathbf{u}^N be a continuous-time Galerkin solution for \mathscr{G}_N . Assume that the sequence $\{\mathscr{G}_N\}$ is complete. Then there exists a sequence $\{\mathbf{r}^N\}$ of rigid motions such that

$$\|\mathbf{u}_t - \mathbf{u}_t^N - \mathbf{r}_t^N\|_{W(B)} \to 0 \quad \text{as} \quad N \to \infty$$
(3.10)

for all $t \in T$. Moreover, \mathbf{r}^N may be set equal to zero when $\sigma \neq \phi, \ddagger$

[†] The variational principle established by Gurtin ([12], eq. (3.12)) for the classical quasi-static problem, when applied in the usual manner to an approximate solution of the form (3.1), leads to the continuous-time Galerkin approximation (3.5).

t We could set $\mathbf{r}^N = 0$ when $\delta = \phi$ if both **u** and the basis functions $\varphi_1, \varphi_2, \dots, \varphi_N$ for each \mathscr{G}_N were normalized (cf. (4.31)). A normalization of this type is utilized by Chou[13] to establish a convergence theorem appropriate to elastostatics.

4. ANALYSIS

Let

 $\mathcal{N} =$ null space of \mathbf{C} ,

 $\mathcal{R} = range of C.$

Lemma 1. (i) C is symmetric. (ii) $\mathcal{R} = \mathcal{N}^{\perp}$. (iii) $\mathcal{N} = \{\lambda \in \mathbb{R}^{N} : \sum_{n} \lambda_{n} \varphi_{n} \text{ is rigid}\}.$ (iv) The range of $\mathbf{K}(t, \tau)$ lies in \mathcal{N}^{\perp} . (v) \mathcal{N} lies in the null space of $\mathbf{K}(t, \tau)$. (vi) $\mathbf{f}(t) \in \mathcal{N}^{\perp}$ whenever $s = \phi$.

Proof. Assertion (i) follows from (2.4) and $(3.6)_1$; and (i), in turn, implies (ii). To establish (iii) assume that

$$\sum_{n} C_{mn} \lambda_n = 0. \tag{4.1}$$

Then, letting

$$\mathbf{w} = \sum_{n} \lambda_n \, \boldsymbol{\varphi}_n \,, \tag{4.2}$$

we conclude, using $(3.6)_1$, that

$$0 = \sum_{m, n} C_{mn} \lambda_m \lambda_n = \langle \mathbf{C} \hat{\nabla} \mathbf{w}, \hat{\nabla} \mathbf{w} \rangle.$$
(4.3)

Thus by (2.5),

$$\nabla \mathbf{w} = \mathbf{0} \tag{4.4}$$

and w is rigid. Conversely, assume that w, given by (4.2), is rigid. Then, by $(3.6)_1$ and (4.4),

$$\sum_{n} C_{mn} \lambda_{n} = \langle \mathbf{C} \hat{\nabla} \mathbf{w}, \hat{\nabla} \boldsymbol{\varphi}_{m} \rangle = 0, \qquad (4.5)$$

so that $\lambda \in \mathcal{N}$. Thus (iii) holds.

Similarly, if $\lambda \in \mathcal{N}$, and if w is the rigid displacement (4.2), then (3.6)₂ and (4.4) imply that

$$\sum_{m} \lambda_m K_{mn}(t, \tau) = 0, \qquad \sum_{n} K_{mn}(t, \tau) \lambda_n = 0, \qquad (4.6)$$

and these results yield (iv) and (v).

Again, choose $\lambda \in \mathcal{N}$ and let w be given by (4.2). Then, if $\sigma = \phi$, (2.11), (3.7), (4.4) and (2.6) imply that

$$\sum_{n} \lambda_{n} f_{n}(t) = \int_{\partial B} \mathbf{s}_{t} \cdot \mathbf{w} + \int_{B} \mathbf{b}_{t} \cdot \mathbf{w} = \mathbf{0}, \qquad (4.7)$$

so that $f(t) \in \mathcal{N}^{\perp}$. This completes the proof of Lemma 1.

Proof of the existence theorem. By (2.11), (A₁), (A₂), the fact that $\mathbf{h}^{N} \in \mathcal{S}$, and the definition of the solution space \mathcal{S} , the function \mathbf{f} defined by (3.7) is piecewise continuous on T. Thus, if a solution α of (3.8) exists, then α must also be piecewise continuous on T; and, since $\mathbf{h}^{N} \in \mathcal{S}$ and each $\varphi_{n} \in W(B)$, it is clear that the field \mathbf{v} , defined by (3.1) (or (3.3)),

will be a member of the solution space \mathscr{S} and hence of \mathscr{G}_N . Therefore, to establish the existence of a continuous-time Galerkin solution v for \mathscr{G}_N , it suffices to establish the existence of a solution α of (3.8).

Assume first that $\sigma \neq \phi$. It suffices to show that C^{-1} exists, for then (3.8) reduces to an integral equation for α . By (iii), if $C\lambda = 0$, then w, defined by (4.2), must be rigid. But w must vanish on σ , since each φ_n has this property; thus, in view of the remark made in Section 1, w = 0, and, as $\{\varphi_n\}$ is a basis for Φ_N , this implies that each λ_n must vanish. Thus in this instance $\mathcal{N} = \{0\}$ and C is invertible.

Assume next that $\sigma = \phi$. It follows from (ii) that $\tilde{\mathbf{C}}: \mathcal{R} \to \mathcal{R}$, the restriction of \mathbf{C} to \mathcal{R} , is invertible. Let $\tilde{\mathbf{K}}(t, \tau)$ denote the restriction of $\mathbf{K}(t, \tau)$ to \mathcal{R} . By (ii) and (iv), $\tilde{\mathbf{K}}(t, \tau): \mathcal{R} \to \mathcal{R}$. It therefore follows from (vi) that the integral equation

$$\tilde{\mathbf{C}}\boldsymbol{\alpha}(t) + \int_0^t \tilde{\mathbf{K}}(t, \tau) \boldsymbol{\alpha}(\tau) \, \mathrm{d}\tau = \mathbf{f}(t)$$

has a unique solution $\alpha: T \to \mathcal{R}$. Trivially, α is also a solution of our original equation (3.8).

We have only to show that when $\sigma = \phi$ any two solutions of (3.8) differ by a rigid motion. Thus let α denote the difference between two such solutions, so that

$$\mathbf{C}\boldsymbol{\alpha}(t) + \int_0^t \mathbf{K}(t,\tau)\boldsymbol{\alpha}(\tau) \,\mathrm{d}\tau = \mathbf{0}. \tag{4.8}$$

Let

$$\boldsymbol{\alpha}(t) = \boldsymbol{\lambda}(t) + \boldsymbol{\beta}(t), \qquad \boldsymbol{\lambda}(t) \in \mathcal{N}, \qquad \boldsymbol{\beta}(t) \in \mathcal{N}^{\perp}.$$
(4.9)

Then, since \mathcal{N} is the null space of C, (ii), (v), (4.8), and (4.9) imply that β is the unique solution of

$$\tilde{\mathbf{C}}\boldsymbol{\beta}(t) + \int_0^t \tilde{\mathbf{K}}(t,\tau)\boldsymbol{\beta}(\tau) \,\mathrm{d}\tau = \mathbf{0}. \tag{4.10}$$

Thus $\beta = 0$, and we conclude from (4.9) and (iii) that

$$\mathbf{w}(\mathbf{x},t) = \sum_{n} \alpha_{n}(t) \varphi_{n}(\mathbf{x})$$
(4.11)

is a rigid motion. This completes the proof.

Lemma 2. Let α , β , γ : $T \rightarrow [0, \infty)$ with α and β piecewise continuous and γ monotone increasing. Assume that

$$\alpha(t) \le \beta(t) + \gamma(t) \int_0^t \alpha(\sigma) \, \mathrm{d}\sigma \tag{4.12}$$

for all $t \in T$. Then

$$\alpha(t) \le \beta(t) + \gamma(t) \int_0^t e^{(t-\sigma)\gamma(t)} \beta(\sigma) \,\mathrm{d}\sigma \tag{4.13}$$

for all $t \in T$.

Proof. Choose $t \in T$ arbitrarily. Since γ is monotone increasing,

$$\alpha(\tau) \le \beta(\tau) + \gamma(t) \int_0^\tau \alpha(\sigma) \, \mathrm{d}\sigma \tag{4.14}$$

for all $\tau \in [0, t]$, and we may conclude from Gronwall's inequality[†] that

$$\alpha(\tau) \le \beta(\tau) + \gamma(t) \int_0^\tau e^{(\tau - \sigma)\gamma(t)} \beta(\sigma) \, \mathrm{d}\sigma \tag{4.15}$$

for all $\tau \in [0, t]$. In particular, if we take $\tau = t$ we arrive at (4.13).

Let $D: W(B) \times W(B) \rightarrow R$ be defined by

$$D(\mathbf{v}, \mathbf{w}) = \langle \mathbf{C} \widehat{\nabla} \mathbf{v}, \widehat{\nabla} \mathbf{w} \rangle. \tag{4.16}$$

Then, as is clear from (A_1) , D is symmetric, bilinear, and positive semi-definite. In fact, if we define

$$D(\mathbf{v}) = D(\mathbf{v}, \mathbf{v}), \tag{4.17}$$

then (2.7) implies that

$$\kappa \|\widehat{\nabla}\mathbf{v}\|_{L_2(B)}^2 \le D(\mathbf{v}) \le \kappa_1 \|\widehat{\nabla}\mathbf{v}\|_{L_2(B)}^2$$

$$(4.18)$$

for every $\mathbf{v} \in W(B)$. Further, (A_1) and the definition of the solution space \mathcal{S} yield the following implication:

$$\mathbf{w} \in \mathscr{S} \Rightarrow t \to D(\mathbf{w}_t)$$
 is piecewise continuous. (4.19)

Lemma 3. Let $\mathbf{w} \in \mathcal{S}$, $\boldsymbol{\varphi} \in \Phi$. Then given any $\alpha > 0$

$$2\int_{0}^{t} \langle \mathbf{K}(t,\tau)\widehat{\nabla}\mathbf{w}_{\tau}, \widehat{\nabla}\mathbf{\phi} \rangle \, \mathrm{d}\tau \leq m(t) \left[\frac{t}{\alpha} D(\mathbf{\phi}) + \alpha \int_{0}^{t} D(\mathbf{w}_{\tau}) \, \mathrm{d}\tau\right], \tag{4.20}$$

where

$$m(t) = \frac{1}{\kappa} \sup_{(\mathbf{x}, \tau) \in B \times [0, t]} |\mathbf{K}(\mathbf{x}, t, \tau)|.$$
(4.21)

Proof. Let $\|\cdot\| = \|\cdot\|_{L_2(B)}$. Then

$$2 \int_{0}^{t} \langle \mathbf{K}(t,\tau) \hat{\nabla} \mathbf{w}_{\tau}, \hat{\nabla} \mathbf{\phi} \rangle d\tau \leq 2\kappa m(t) \int_{0}^{t} \| \hat{\nabla} \mathbf{w}_{\tau} \| \| \hat{\nabla} \mathbf{\phi} \| d\tau,$$
$$\leq \kappa m(t) \int_{0}^{t} \left[\alpha \| \hat{\nabla} \mathbf{w}_{\tau} \|^{2} + \frac{1}{\alpha} \| \hat{\nabla} \mathbf{\phi} \|^{2} \right] d\tau, \qquad (4.22)$$

where we have used the inequality

$$2ab\leq \alpha a^2+\frac{1}{\alpha}b^2.$$

The desired result (4.20) follows from (4.18) and (4.22).

Lemma 4. Let **u** be a weak solution. and let **v** be a continuous-time Galerkin solution for \mathscr{G}_N . Further, let $\mathbf{g} \in \mathscr{G}_N$ be arbitrary, and let

$$\mathbf{p} = \mathbf{u} - \mathbf{g}, \qquad \mathbf{q} = \mathbf{v} - \mathbf{g}. \tag{4.23}$$

† See, e.g. Reid[14], p. 13.

940

Then given any $t_0 \in T$ there exists a number $c_0(t_0)$ such that

$$D(\mathbf{q}_t) \le c_0(t_0) \sup_{\mathbf{\tau} \in [0, t_0]} D(\mathbf{p}_{\mathbf{\tau}})$$
(4.24)[†]

for all $t \in [0, t_0]$.

Proof. Since $\Phi_N \subset \Phi$, it follows from (2.12), (3.5), (4.16) and (4.23) that

$$D(\mathbf{q}_{t}, \boldsymbol{\varphi}) + \int_{0}^{t} \langle \mathbf{K}(t, \tau) \hat{\nabla} \mathbf{q}_{\tau}, \hat{\nabla} \boldsymbol{\varphi} \rangle \, \mathrm{d}\tau = D(\mathbf{p}_{t}, \boldsymbol{\varphi}) + \int_{0}^{t} \langle \mathbf{K}(t, \tau) \hat{\nabla} \mathbf{p}_{\tau}, \hat{\nabla} \boldsymbol{\varphi} \rangle \, \mathrm{d}\tau \qquad (4.25)$$

for all $\varphi \in \Phi_N$. Since both v and g belong to \mathscr{G}_N , it is clear from (3.4) and (4.23)₂ that $\mathbf{q}_t \in \Phi_N$. If we take φ in (4.25) equal to \mathbf{q}_t , and use the inequality

$$2D(\mathbf{p}_t, \mathbf{q}_t) \le D(\mathbf{p}_t) + D(\mathbf{q}_t)$$
(4.26)

and (4.20) (first with $\mathbf{w} = \mathbf{q}$, $\boldsymbol{\phi} = \mathbf{q}_t$, then with $\mathbf{w} = \mathbf{p}$, $\boldsymbol{\phi} = \mathbf{q}_t$), we arrive at the inequality

$$D(\mathbf{q}_t) \le D(\mathbf{p}_t) + m(t) \left[\frac{2t}{\alpha} D(\mathbf{q}_t) + \alpha \int_0^t [D(\mathbf{q}_t) + D(\mathbf{p}_t)] \, \mathrm{d}\tau \right], \tag{4.27}$$

where $\alpha > 0$ is arbitrary. Since we are at liberty to let α in (4.27) depend on t, we can take $\alpha = 4tm(t)$ for $tm(t) \neq 0$. Then, letting

$$\gamma(t) = 8tm^2(t),$$

$$\beta(t) = 2D(\mathbf{p}_t) + \gamma(t) \int_0^t D(\mathbf{p}_t) \, \mathrm{d}\tau,$$
(4.28)

we conclude that

$$D(\mathbf{q}_t) \le \beta(t) + \gamma(t) \int_0^t D(\mathbf{q}_t) \,\mathrm{d}\tau, \qquad (4.29)$$

for $tm(t) \neq 0$. By (4.27), (4.29) also holds when tm(t) = 0; hence (4.29) holds for all $t \in T$. It is clear from (4.21) and (4.28)₁ that γ is non-negative and monotone increasing. Further, since D is positive semi-definite, $\alpha(t) = D(\mathbf{q}_t) \ge 0$ and $\beta(t) \ge 0$, while (4.19) implies that α and β are piecewise continuous on T. Thus we may use Lemma 2 to arrive at

$$D(\mathbf{q}_t) \le \beta(t) + \gamma(t) \int_0^t e^{(t-\tau)\gamma(t)} \beta(\tau) \,\mathrm{d}\tau.$$
(4.30)

Clearly, (4.30) and (4.28) imply (4.24), and the proof is complete.

A field $\varphi \in W(B)$ is normalized if

$$\int_{B} \boldsymbol{\varphi} = \boldsymbol{0}, \qquad \int_{B} (\nabla \boldsymbol{\varphi} - \nabla \boldsymbol{\varphi}^{T}) = \boldsymbol{0}.$$
(4.31)

It is not difficult to show that if φ is rigid and normalized, then $\varphi = 0$. Further, for any $\varphi \in W(B)$ there exists a unique rigid displacement **r** such that $\varphi + \mathbf{r}$ is normalized; in this case we say that **r** normalizes φ .

941

[†] This inequality is the crucial step in the proof of convergence. In this regard see Aubin[15], p. 132, Douglas and Dupont[16], and Price and Varga[17], who utilize an analysis of this type for parabolic problems.

Lemma 5. (Korn's Inequality).[†] There exists a positive constant c such that

$$\|\boldsymbol{\varphi}\|_{\boldsymbol{W}(B)}^2 \le cD(\boldsymbol{\varphi}) \tag{4.32}$$

for each $\phi \in \Phi$, provided ϕ is normalized if $\sigma = \phi$.

Proof of the convergence theorem. Let $\{g^N\}$ be an approximating sequence for **u** (such a sequence exists since $\{\mathscr{G}_N\}$ is complete), and let

$$\mathbf{p}^N = \mathbf{u} - \mathbf{g}^N, \qquad \mathbf{q}^N = \mathbf{u}^N - \mathbf{g}^N. \tag{4.33}$$

Then (3.9) with $\mathbf{k} = \mathbf{u}$ asserts that

$$\|\mathbf{p}_t^N\|_{W(B)} \to 0 \quad \text{as} \quad N \to \infty \tag{4.34}$$

uniformly on any bounded interval of T. Thus, since

$$\|\widehat{\nabla} \mathbf{p}_{t}^{N}\|_{L_{2}(B)} \leq \|\mathbf{p}_{t}^{N}\|_{W(B)}, \qquad (4.35)$$

we conclude from (4.18) and Lemma 4 that

$$D(\mathbf{q}_t^N) \to 0 \quad \text{as} \quad N \to \infty.$$
 (4.36)

Let \mathbf{r}^N be the rigid motion with the following property: $\mathbf{r}^N = 0$ if $\sigma \neq \phi$; \mathbf{r}_t^N normalizes \mathbf{q}_t^N at each $t \in T$ if $\sigma = \phi$. By the remarks made in the paragraph containing (4.25), it is clear that $\mathbf{q}_t^N \in \Phi$. Thus we conclude from Korn's inequality (Lemma 5) and (4.36) that

$$\|\mathbf{q}_t^N + \mathbf{r}_t^N\|_{W(B)} \to 0 \quad \text{as} \quad N \to \infty.$$
(4.37)

Here we have used the fact that, because \mathbf{r}^N is rigid, $D(\mathbf{q}_t^N + \mathbf{r}_t^N) = D(\mathbf{q}_t^N)$. Next, by (4.33),

$$\|\mathbf{u}_{t} - \mathbf{u}_{t}^{N} - \mathbf{r}_{t}^{N}\|_{W(B)} = \|\mathbf{p}_{t}^{N} - \mathbf{q}_{t}^{N} - \mathbf{r}_{t}^{N}\|_{W(B)} \le \|\mathbf{p}_{t}^{N}\|_{W(B)} + \|\mathbf{q}_{t}^{N} + \mathbf{r}_{t}^{N}\|_{W(B)}, \quad (4.38)$$

and (4.34), (4.37) and (4.38) imply (3.10). This completes the proof of the convergence theorem.

Acknowledgement—This work was supported, in part, by the National Science Foundation.

REFERENCES

- 1. R. L. Taylor and T. Y. Chang, An approximate method for thermoviscoelastic stress analysis, Nucl. Engng. Des. 41, 45-59 (1966).
- 2. J. L. White, Finite elements in linear viscoelasticity, Proc. 2nd Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio (1968).
- O. C. Zienkiewicz, M. Watson and I. P. King, A numerical method for viscoelastic stress analysis, Int. J. Mech. Sci. 10, 807-827 (1968).
- 4. E. Heer and J. C. Chen, Finite element formulation for linear thermoviscoelastic materials. JPL Tech. Rep. 32-1381, Cal. Inst. Tech. (1969).
- R. L. Taylor, K. S. Pister and G. L. Goudreau, Thermomechanical analysis of viscoelastic solids, Int. J. Num. Meth. Engr. 2, 45-59 (1970).
- 6. G. Fichera, Existence theorems in elasticity, Handbuch der Physik, Vol. VIa/2, pp. 347-389. Springer, Berlin (1972).
- 7. M. E. Gurtin, The linear theory of elasticity, *Handbuch der Physik*, Vol. VIa/2, pp. 1-295. Springer, Berlin (1972).

† See, e.g. Hlaváček and Nečas[9], Theorem II.11. These authors show that (4.32) holds provided the underlying space V of functions φ is contained in W(B) and has the following property: $\varphi \in V$ and φ rigid implies $\varphi = 0$. The underlying space V in our statement of the theorem clearly has this property. Indeed, when $\sigma \neq \phi$ each $\varphi \in \Phi$ satisfies $\varphi = 0$ on σ ; by the remark made in Section 1, the only rigid $\varphi \in \Phi$ with this property is $\varphi = 0$. On the other hand, when $\sigma = \phi$ we require that φ be normalized; again, the only normalized, rigid $\varphi \in \Phi$ is $\varphi = 0$.

- 8. V. I. Smirnov, Integration and Functional Analysis. A Course of Higher Mathematics, Vol. V., 16th edition. Addison-Wesley, Reading, Mass. (1964).
- 9. I. Hlaváček and J. Nečas, On inequalities of Korn's type—II. Applications to linear elasticity, Arch. Rat. Mech. Anal. 36, 312-334 (1970).
- 10. B. D. Coleman, On thermodynamics, strain impulses, and viscoelasticity. Arch. Rat. Mech. Anal. 17, 230-254 (1964).
- 11. M. E. Gurtin and I. Herrera, On dissipation inequalities and linear viscoelasticity, Q. Appl. Math. 23, 235-245 (1965).
- 12. M. E. Gurtin, Variational principles in the linear theory of viscoelasticity, Arch. Rat. Mech. Anal. 13, 179-191 (1963).
- 13. Shih-I Chou, Galerkin approximations on linear elastostatics, elastodynamics, and thermoelastodynamics, Ph.D. Thesis, Rice University, Houston, Texas (1972).
- 14. W. T. Reid, Ordinary Differential Equations, 1st ed. Wiley, New York (1971).
- 15. J. P. Aubin, Approximation des espaces de distributions et des operateurs differentiels, *Bull. Soc. Math. France, Memoire* **12** (1967).
- 16. J. Douglas and T. Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7, 575–624 (1970).
- 17. H. S. Price and R. S. Varga, Error bounds for semi-discrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics, *Numerical Solution of Field Problems in Continuum Physics*, Providence, American Mathematical Society, 74–94 (1970).

Абстракт — Метод финитного элемента последних лет успешно применялся к проблемам граничного значения в пределах квазистатической теории вазкоупругости. Метод финитного элемента, применяемый при этих условиях, является специальным случаем, на который теперь ссылаются как метод непрерывного времени Галеркина. В настоящей работе устанавливают конвергенцию этого метода. Полученные результаты достаточно общие для включения термовязкоупругих твердых тел под влиянием предписанного, зависимого от времени, температурного поля.